

# 风云四号卫星闪电成像仪虚警滤除方法

高慧婷<sup>1,2\*</sup>, 鲍书龙<sup>1</sup>, 梁华<sup>1</sup>, 黄福祥<sup>3</sup>

<sup>1</sup>北京空间机电研究所,北京 100094; <sup>2</sup>先进光学遥感技术北京市重点实验室,北京 100094; <sup>3</sup>中国气象局国家卫星气象中心,北京 100081

摘要 风云四号闪电成像仪(LMI)在轨数据分析结果表明,虚假闪电事件包括鬼像噪声、高能粒子轨迹噪声和散 粒噪声。为了提高闪电探测性能,在深入分析虚假事件特性的基础上,分别提出了基于空间-能量相关性的鬼像滤 除方法、基于 Hough 直线检测的高能粒子轨迹噪声滤除方法、基于时空相关聚类的散粒噪声剔除方法,并形成闪 电虚警滤除处理系统方法。为了验证虚警滤除算法性能,对云南和海南的两次典型雷暴数据进行处理,并与地基 网探测结果进行比对,结果表明,所提算法处理后的闪电事件分布特性与地基探测结果基本一致,验证了风云四号 闪电成像仪对雷电变化过程的持续跟踪性能。

**关键词** 成像系统;闪电成像仪;虚假事件;滤波;聚类 **中图分类号** TP751 **文献标志码** A

doi: 10.3788/AOS202141.0911001

## Filtering Algorithm for Nonlightning Events Using the FY-4 Lightning Mapping Imager

Gao Huiting<sup>1,2\*</sup>, Bao Shulong<sup>1</sup>, Liang Hua<sup>1</sup>, Huang Fuxiang<sup>3</sup>

<sup>1</sup> Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China;

<sup>2</sup> Beijing Key Laboratory of Advanced Optical Remote Sensing Technology, Beijing 100094, China; <sup>3</sup> National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China

**Abstract** By analyzing the on-board lightning data of the FY-4 lightning mapping imager (LMI), there are three types of nonlightning events: ghost noise, high-energy-particle-trajectory noise, and shot noise. To improve the performance of lightning detection, based on an in-depth analysis of the characteristics of false events, the ghost-image-filtering method based on spatial energy correlation, the high-energy-particle-trajectory noise-filtering method based on Hough linear detection, and the shot-noise-filtering method based on spatiotemporal correlation clustering are proposed, and the lightning false-alarm-filtering-processing system method is performed. To test the performance of the false-alarm-filtering algorithm, the lightning data obtained by the LMI with those obtained by ground-based network. The results show that the distribution characteristics of lightning events processed by the proposed algorithm are consistent with the ground-based detection results, which verifies the continuous tracking performance of the FY-4 lightning mapping imager for the lightning change process. **Key words** imaging systems; lightning mapping imager; nonlightning artifact; filtering; clustering

OCIS codes 110.2970; 80.4788; 20.0280

收稿日期: 2020-10-09; 修回日期: 2020-11-12; 录用日期: 2020-12-01

基金项目:国家自然科学基金(41871278)、科技部地导专项(2018YFB0504801)

\* E-mail: gaohuiting\_1100@126.com

### 1 引 言

闪电是一种能够表征大气强对流活动的现象, 航空飞行安全、极端天气预报等需要对闪电进行实 时连续观测,静止轨道卫星闪电探测是大范围闪电 监测的理想平台。美国 NASA 于 20 世纪 90 年代 中期分别发射搭载闪电探测载荷光学瞬态探测器 (OTD)和闪电定位系统(LIS)的极轨卫星,获得大 量天基闪电观测数据<sup>[1]</sup>。2016 年美国新一代静止 轨道气象卫星 GOES-R 携带闪电探测载荷(GLM) 实现全圆盘连续闪电探测<sup>[2]</sup>。

我国新一代静止轨道气象卫星风云四号卫星于 2016年12月11日发射升空,星上搭载的闪电成像 仪是我国首台星载闪电探测载荷,覆盖地面 3200 km(纬度)×4800 km(经度)幅宽的扇形区域, 星下点空间分辨率为7.8 km,可实现对我国及周边 区域闪电的24h连续观测。闪电成像仪采用波长 777.4 nm附近的1 nm带宽超窄带滤光片实现光谱 滤波,采用2 ms帧频实现时间滤波,采用实时背景 预估算法实现背景噪声去除,具有以下功能:1)连续 闪电数据获取,用于雷暴预测;2)早期雷暴预警; 3)中国及周边地区闪电的长期变化监测<sup>[3-5]</sup>。

闪电成像仪通过光学成像技术将闪电信号转换 为连续图像序列,当信号超过设定阈值时即判断为 闪电事件。闪电数据中既包括真实信号,也包括非 闪电虚假信号,根据 LIS 数据处理经验,虚假事件 占全部闪电事件总数的 80%~90%,因此必须进行 虚假事件滤波,减少非闪电事件。一些虚假事件是 由发生在 CCD 上的特殊现象引起的,在定位时可以 被滤除,另外一些虚假事件必须基于闪电空间和时 间连续特性进行滤除,需要在事件聚类之后进行滤 除处理。

NASA 针对 LIS 在轨数据提出了一系列虚警 滤除算法。鬼影噪声产生的原因是 LIS 星上数据 读取系统采用循环方式,当 CCD 面阵上某个象限存 在一个明亮像元,数据读取系统受跟踪速度限制,没 有足够时间重置该像元,就可能在镜像位置产生较 暗像元,称为鬼影。滤除处理时设定鬼影产生的响 应阈值,逐个像元判断是否满足鬼影产生的条件,如 满足,则在鬼影可能产生的位置检测是否出现弱像 元响应,若出现,则该像元确定为鬼影事件,直接进 行滤除处理。高能粒子轨迹噪声是由空间高能粒子 撞击 CCD 面 阵产生的,滤除方法研究比较多。 Christian 等<sup>[6]</sup>针对 LIS 数据采用辐射算法,从形态 上区分真实闪电与高能轨迹噪声信号;Kirkland 等<sup>[7]</sup>通过改进的聚类算法滤除高能粒子轨迹噪声; Qu 等<sup>[8]</sup>考虑到噪声的聚类属性不同于真实闪电事 件,用 Monte-Carlo 方法模拟纯噪声信号,然后对纯 噪声信号进行聚类,进而根据特定噪声频率条件下 的事件数量,判断滤除哪些闪击。如果高能粒子撞 击 CCD 面阵的入射角比较小,通常采用相干算法对 只有单个或单组像元产生的散粒噪声进行处理。散 粒噪声是相机在光电转换过程中由电荷数涨落产生 的虚假闪电事件,采用相干算法进行聚类并滤除。 GLM 继承 LIS 星上闪电检测与存储技术方案,噪 声滤除仍然沿用 LIS 处理方法<sup>[9]</sup>。

风云四号(FY-4)闪电成像仪在相机设计、星上 闪电数据处理和存储传输方面与 LIS 存在差异,导 致其在轨数据中虚警的形态和规律也存在差异。本 文基于 FY-4 闪电成像仪载荷成像特性,结合实验 室测试和在轨数据进行闪电虚假事件特性分析,开 展典型虚假事件滤除方法研究,并利用在轨数据进 行算法验证。

### 2 虚假闪电事件滤除算法

#### 2.1 闪电数据定义

闪电成像仪的闪电探测数据由表征闪电信号的 闪电事件(event)组成,星上闪电处理器检测出图像 中单个像素亮度超过检测阈值时,将其记为闪电事 件。闪电事件代表基本的闪电数据单元,闪电事件 可能是一次真实脉冲放电,也可能是噪声引起的虚 假信号。一次放电通常会引起积分时间内焦面上相 邻几个像素的响应,导致一帧图像中存在两个或多 个相邻闪电事件,相邻事件组成闪电组(group)。发 生在同一次雷电单元内一定时间和空间间隔范围内 的一个或多个光学脉冲组成闪击(flash),表现为若 干个时空相关闪电组的集合<sup>[10]</sup>。

#### 2.2 鬼 像

#### 2.2.1 噪声特性

风云四号卫星闪电成像仪使用带宽为1nm、反 射率为0.6的滤光片实现窄带滤波,滤光片位于光 学系统最前端,相当于平面镜,经光学元件和CCD 反射成像光路的光被滤光片对称地反射回去,经光 学系统再次成像后,形成鬼像。图1为闪电成像仪 实验室测试时鬼影噪声图像,图中亮暗线为五线靶 标实际图像,在靶标右下侧有类似靶标的暗影(圈出 部分),即为鬼影噪声,可以明显看出鬼影噪声与真 实信号形态完全一致,且与真实信号存在关于某一

研究论文



图 1 实验室测试的真实信号及鬼影图像 Fig. 1 Measured true signals and ghosts in laboratory measurement

点的对称关系,统计分析结果是鬼影噪声像素灰度 值仅为真实信号的3%~5%。根据实验室数据可 以获得真实信号与鬼影噪声的镜像位置和能量关



系,对于在轨数据的每一个闪电事件,首先计算鬼影 噪声在图像中的位置,之后进行能量关系检测,滤除 满足位置和能量关系约束的低亮度孤立像元。 2.2.2 处理算法

假设检出的闪电事件在图像中的位置为  $(x,y),响应值为 D_{(x,y)},根据实验室测量得到的信$ 号和鬼像间的镜像关系得到其鬼影位置为<math>(x',y'), 响应值为  $D_{(x',y')}$ 。当两像素响应间的关系满足

$$D_{(x',y')} < \alpha \cdot D_{(x,y)}, \qquad (1)$$

则判断(x',y')为鬼像。其中 $\alpha$ 为实验室测量信号与鬼像间响应比值关系。

图 2 为闪电成像仪在轨鬼像。白色亮斑表示真 实闪电信号,'+'表示真实信号产生的鬼像。表 1 为信号和鬼像位置的响应值,可以发现鬼像响应低 于信号响应的 5%,且镜像关系稳定,与实验室测试 结果保持一致。



### 图 2 在轨闪电信号及鬼像噪声示意图。(a)实例 1;(b)实例 2 Fig. 2 On-orbit examples of signals and ghosts. (a) Example 1; (b) example 2

表1 在轨闪电信号和鬼像位置和响应值

| Гable 1 | Position and D of on-orbit lightning |
|---------|--------------------------------------|
|         | signal and ghost                     |

|           |           | 0      | 0    |           |        |      |
|-----------|-----------|--------|------|-----------|--------|------|
| Image     | Example 1 |        |      | Example 2 |        |      |
|           | Row       | Column | D    | Row       | Column | D    |
| Ghost     | 89        | 209    | 33   | 153       | 215    | 30   |
|           | 323       | 88     | 3428 | 256       | 83     | 3161 |
|           | 322       | 88     | 3197 | 255       | 83     | 2708 |
|           | 323       | 89     | 1580 | 256       | 82     | 2097 |
|           | 322       | 89     | 1406 | 255       | 82     | 1779 |
|           | 321       | 88     | 1074 | 256       | 84     | 1119 |
|           | 323       | 87     | 964  | 255       | 84     | 804  |
| Lightning | 322       | 87     | 938  | 257       | 83     | 716  |
| Lightning | 324       | 88     | 798  | 257       | 82     | 604  |
| event     | 321       | 89     | 790  | 256       | 81     | 576  |
|           | 324       | 89     | 568  | 255       | 81     | 485  |
|           | 324       | 87     | 451  | 257       | 84     | 481  |
|           | 322       | 90     | 444  | 254       | 83     | 417  |
|           | 321       | 87     | 417  | 254       | 82     | 364  |
|           | 323       | 90     | 423  | 256       | 85     | 352  |
|           | 324       | 90     | 306  | 254       | 84     | 321  |

### 2.3 高能粒子轨迹噪声

2.3.1 噪声特性

由于卫星在轨恶劣的电磁环境,如紫外线、太阳 风等,高能粒子撞击闪电成像仪探测器,高能粒子在 一帧时间内发生相对运动后形成线性分布轨迹,称 为高能粒子轨迹噪声。根据 LIS 在轨探测结果,高 能粒子轨迹噪声在一帧内多以成簇形式出现,与闪 电事件组接近,但在2 ms 曝光时间内几十甚至几百 千米的闪电信号不可能同时发生,是高能粒子轨迹 噪声与闪电事件组(group)的最大区别。闪电成像仪 在轨图像中的部分高能粒子轨迹噪声如图 3 所示。

风云四号卫星闪电成像仪高能粒子轨迹噪声特 性有形状接近线性;事件组连续或断续;事件发生在 相同或相邻帧内。这些特性与 NASA 的 LIS 探测 结果有所区别,原因如下。

1) 风云四号卫星闪电成像仪闪电事件星上提 取算法与 LIS 存在差异,星上处理器基于阈值进行 闪电事件提取,其中闪电阈值根据实验室测试数据



图 3 在轨高能粒子轨迹噪声 Fig. 3 Trajectory noise of on-orbit high energy particles

进行设置,与载荷响应特性密切相关。

2)风云四号卫星闪电成像仪星上处理盒设计 与LIS有差别,受星上存储空间限制,闪电成像仪 星上处理器每次最多只输出最强的120个闪电事 件。在相机设计过程中,闪电成像仪视场被分为8 个子区,国家卫星中心气象用户根据2ms内子区对 应我国各个地区闪电发生概率差异,给出了各子区 最大输出事件个数建议。结合LIS在轨探测全球 闪电事件分布特性、全国雷电监测定位系统对全国 地闪的长期统计结果,最终确定各个子区内最多可 输出事件个数如图4所示,子区7对应的华南地区 (18°~27°N、104°~117°E)为我国闪电活动最活跃 区域<sup>[11-13]</sup>。

| area4          | area3      | area2      | areal      |
|----------------|------------|------------|------------|
| =15 Events<=10 | Events<=15 | Events<=9  | Events<=6  |
| area8          | area7      | area6      | area5      |
| =35 Events<=15 | Events<=35 | Events<=15 | Events<=15 |
| =35 Events<    | Events<=35 | Events<=15 | Events<=15 |

图 4 各子区最大输出事件个数

Fig. 4 Maximum number of output events in each sub-area

2.3.2 处理算法

基于高能粒子轨迹噪声特性,提出一种基于 Hough 变换的高能粒子轨迹噪声检测方法<sup>[14-16]</sup>。 假设待处理图像中的兴趣像素位置为(*x*,*y*),对于 过该点的任意一条直线,投影至极坐标系(ρ,θ)为

$$\rho = x\cos\theta + y\sin\theta, \qquad (2)$$

式中: ρ 为从极坐标原点到该空间内直线所引的垂 线长度, θ 为此直线与横轴的夹角。如果把直角坐 标空间看作原始量测空间, 极坐标空间看作参数空 间, 量测空间中任意一点(x, y)将对应参数空间中 的一条正弦曲线。 对于每一个特征像素, $\rho$ 和 $\theta$ 成对出现, $\theta$ 变化 范围为-90°~90°,以一定步长取值,则可根据(2) 式计算出 $\rho$ 值,再根据取整后的 $\rho$ 和 $\theta$ 值对累加器 数组 H 进行累加,由 H( $\rho$ , $\theta$ )确定共线点的个数, 同时 $\rho$ 和 $\theta$ 也给出了共线点确定的直线的参数。

量测空间中任意一点(x,y)将对应参数空间中 的一条正弦曲线,量测空间中位于同一直线上的点 确定了参数空间的多条正弦曲线,且这些正弦曲线 相交于同一点( $\theta_0, \rho_0$ ),此交点即确定了原量测空间 中直线的参数。如果把量测空间上各点的能量分布 到相应 Hough 参数空间的正弦曲线上进行叠加,在 这些正弦曲线的交点上将会出现一个峰值。因此, 判断量测空间中的各点是否在一条直线上,就等价 于在  $\theta$ - $\rho$  平面内找到一簇正弦曲线的交点。

2.3.3 参数分析

高能粒子轨迹噪声在像面上表现为由若干个近 似共线离散事件组成的直线,且离散事件之间存在 一定距离。在利用 Hough 变换进行检测时,需通过 控制检测约束解决直线过连接、断续、线性度等问 题,提高检测的稳健性<sup>[17]</sup>。首先要避免将位于一条 直线上但距离较远的点错判为一条高能粒子轨迹噪 声,其次由于高能粒子轨迹并非严格直线,若检出不 同直线间夹角小于给定阈值,则须合并直线,再次避 免将一些短线或离散点误认为是被检测直线。要将 Hough 变化用于高能粒子轨迹噪声检测,必须通过 统计分析获取特征参数,构建直线端点、长度、点间 距等属性约束模型。

对 2017 年 1~6 月间获取的闪电在轨数据进行 分析,获得以下参数。

1) 1 天中发生次数

1天内发生次数大致相同,变化 400~500次,

#### 研究论文

包含事件个数约占事件总数的 0.7%。

2) 闪电事件个数

表示单次高能粒子轨迹噪声包含闪电事件个数,直方图统计结果表明,闪电事件个数最大值为42,最小值为5,95%以上超过15。

3) 轨迹长度

表示高能粒子轨迹线段首尾两个事件间的距离,轨迹长度直方图统计结果表明,长度最大值为 117.8,最小值为5,95.8%以上小于30。

4) 事件分布特性

表示高能粒子轨迹中相邻事件间的距离,相邻 事件间距离直方图统计结果表明,最大值 6.7, 98.8%以上等于1。

### 2.4 散粒噪声

2.4.1 噪声特性

散粒噪声是载荷或卫星引起的随机噪声。一类 是由光子和光生电荷数涨落引起的,通常表现为单 一像元产生电信号,信号强度一般比较低;另一类是 由高能粒子碰撞造成的,如果高能粒子撞击入射角 较小,只有单个或单组像元产生信号;最后一类是未 知原因引起的图像污染。单独看散粒,与闪电事件 图像特性相近,但不具有典型真实闪电的时空连续 特性。散粒噪声基本特性包括:随机性强,一般在同 一帧内发生;事件出现在单个像元或几个像元,不具 备闪电组(group)或闪击(flash)时空连续特性。

2.4.2 处理算法

针对散粒噪声的基本特性,利用时空聚类方法 提取闪电信号,未被聚类为闪电产品的事件可以认 为是散粒噪声。闪电放电过程通常在一定区域内持 续一段时间。当多个事件相邻,可以被聚类为组,满 足一定时空相邻约束的组可合并为闪击,空间相邻 闪击可聚类为闪区(area)。对于闪电成像仪,定义 组聚类为闪击的时间间隔为 330 ms,距离小于 6 个 像元。

进行聚类处理时,闪电事件沿顺时针方向被编码为8方向 freeman 链码。假设一个闪电事件在图像中的位置为(*x*,*y*),按照逆时针方向进行逐像素的轮廓搜索,搜索方向的顺序由当前链码方向确定,每移动一个像素,记录相应的方向编号,直到搜索回到初始点或无法找到下一个点时链码结束。链码的方向和初始位置坐标联合表示一个链码,独立表征任意形态的对象,根据 freeman 链码规则提取闪电事件簇轮廓,之后检测其余闪电事件与轮廓间关系,得到闪电组<sup>[18]</sup>。单帧闪电数据聚类处理流程如图 5

所示,聚类结果如图 6 所示,不同颜色表示经过链码 聚类后的不同闪电组(group)。



#### 图 5 闪电事件聚类处理流程图

Fig. 5 Flowchart of cluster process of lightning events





实现闪电事件到闪电组的聚类后,根据时空聚 类约束进一步将闪电组(group)聚类为闪击 (flash),则当某一闪击只出现在某一帧图像中时, 可认为该闪击为散粒噪声。

#### 2.5 闪电成像仪虚警滤除处理流程

闪电成像仪虚警滤除处理流程:首先进行鬼像 滤除,该虚警由闪电成像仪光学系统多次反射产生, 滤除处理对其他虚警滤除算法无影响;之后进行高 能粒子轨迹滤除,轨迹形态特性滤除算法能够实现 对高能粒子轨迹噪声的完整辨识;最后进行散粒噪

声滤除。

### 3 在轨数据验证与讨论

#### 3.1 虚警滤除算法验证

为了评估所提闪电虚假事件滤除算法的性能, 选择 UTC 时间 2017 年 3 月 29 日 10:00—3 月 30 日 01:00,对中国南方出现的一次雷暴过程数据进行处 理,该时段内 FY-4 卫星定位在东经 99.5°,可覆盖 中国区域。获取同时段地基网探测的闪电结果用于 比对验证。

对该时段数据以1h为间隔的零级数据进行预处理,采用所提算法进行鬼像、高能粒子轨迹、散粒虚 假事件滤除,各时次虚假事件滤除统计结果如表2所示,平均虚警占比达70%,与LIS处理结果接近。

|                       |                                 | 0.0                             | 0                               | 0                                  |                                  |                                    |
|-----------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------|----------------------------------|------------------------------------|
| UTC                   | Number<br>of detected<br>events | Number<br>of ghost<br>filtering | Number<br>of track<br>filtering | Number<br>of granular<br>filtering | Number<br>of lightning<br>events | Proportion<br>of false<br>alarm /% |
| 2017/3/29 10:00-11:00 | 130783                          | 0                               | 179                             | 110608                             | 19996                            | 84.71                              |
| 2017/3/29 11:00-12:00 | 155396                          | 0                               | 190                             | 123686                             | 31520                            | 79.72                              |
| 2017/3/29 12:00-13:00 | 149224                          | 0                               | 217                             | 115770                             | 33237                            | 77.73                              |
| 2017/3/29 13:00-14:00 | 150203                          | 0                               | 200                             | 108096                             | 41907                            | 72.10                              |
| 2017/3/29 14:00-15:00 | 128225                          | 0                               | 152                             | 85157                              | 42916                            | 66.53                              |
| 2017/3/29 15:00-16:00 | 112498                          | 3                               | 525                             | 76317                              | 35653                            | 68.31                              |
| 2017/3/29 16:00-17:00 | 133884                          | 1                               | 398                             | 89184                              | 44301                            | 66.91                              |
| 2017/3/29 17:00-18:00 | 59581                           | 4                               | 407                             | 36424                              | 22746                            | 61.82                              |
| 2017/3/29 18:00-19:00 | 106028                          | 4                               | 560                             | 71684                              | 33780                            | 68.14                              |
| 2017/3/29 19:00-20:00 | 135637                          | 14                              | 451                             | 95939                              | 39233                            | 71.08                              |
| 2017/3/29 20:00-21:00 | 161948                          | 11                              | 355                             | 99454                              | 62128                            | 61.64                              |
| 2017/3/29 21:00-22:00 | 160498                          | 7                               | 452                             | 102104                             | 57935                            | 63.90                              |
| 2017/3/29 22:00-23:00 | 154676                          | 6                               | 319                             | 83668                              | 70683                            | 54.30                              |
| 2017/3/29 23:00-00:00 | 150407                          | 18                              | 373                             | 78749                              | 71267                            | 52.62                              |
| 2017/3/30 00:00-01:00 | 89468                           | 2                               | 185                             | 67074                              | 22207                            | 75.18                              |

表 2 虚假闪电事件滤除结果 Table 2 Filtering result of false lightning event

对 3 月 30 日 0 点开始 1 h 的数据进行虚警滤 除预处理,星上闪电探测结果如图 7(a)所示,虚警 滤除后结果如图 7(b)所示,色度条表示事件个数。 根据闪电定位信息,确定该时段内最强闪电过程发 生在我国云南易武(21.9°N、101.4°E),湖南郴州 (25.8°N、113°E)和湖北武穴(29.8°N、115.5°E)





#### 研究论文

### 第 41 卷 第 9 期/2021 年 5 月/光学学报

地区有较弱闪电过程,与同期地基闪电探测位置基 本吻合,且相对强度具有较强的相似性。该时段同 时监测到泰国和老挝局部地区发生的强雷暴过程, 证明静止轨道闪电探测在监测覆盖区域和时间连续 性方面具有主要优势,从而为中大尺度强对流天气 监测和预报提供有力支撑。

利用 2020 年 6 月 11 日我国海南地区的一次闪 电过程星地同步数据,验证 FY-4 闪电成像仪对雷 暴事件跟踪的性能。此次雷电过程发生时间为6月 11日15:00~18:30,图8表示1h同时段内闪电位 置星地探测对比,可以看到闪电探测位置基本吻合。 雷暴过程中10min间隔星地探测闪电事件个数时 变对比如图9所示,两种探测对雷暴发生-发展-结 束过程的描述基本一致,雷暴最强的时段发生在 17:00~17:30,对比这一时段天地探测闪电个数,总 的匹配度接近90%。



图 8 天地探测闪电 1 h 的结果对比。(a)天基;(b)地基

Fig. 8 Contrast of lightning detection by LMI and LAND every 1 h. (a) LMI; (b) LAND

#### 3.2 星地比对结果讨论

星地闪电探测目前也存在一定的差异,以下几 项因素是造成两种探测手段差异的主要原因。

 1)我国地基闪电观测网基于电磁场探测原理, 统计云的散射和吸收对放电过程的共同作用下闪击 的次数,而闪电成像仪采用光学成像探测原理,探测 云顶闪电放电过程中产生的辐射信号。二者在探测 原理上有差别,两种数据只在一定程度上适合定量 化对比。  2) 地基闪电观测网主要观测的是地闪,而闪电 成像仪观测的是总闪电。

3)两种闪电探测方式都存在固有误差。地基 闪电观测网探测的闪电数据主要受探测效率、定位 误差、时间误差等不确定因素的影响,闪电成像仪像 素地面分辨率(GSD)为7.7 km,定位误差为1个像 素。闪电探测效率受三方面影响,一是受星上存储 和传输资源限制,只保留最强的闪电事件;二是星上 闪电处理算法存在一定的漏检;三是闪电成像仪在



Fig. 9 Change of number of events by time

轨采用 10 min 闪电探测+1 min 地标探测模式,地 标模式下不输出闪电探测结果,必然造成部分闪电 事件丢失。随着后续风云四号 03 星全圆盘闪电探 测载荷设计、研制和使用的不断完善,有望逐步提升 星载闪电探测性能。

### 4 结 论

基于风云四号卫星闪电成像仪特点,提出一套 时-空-辐关联的虚假事件滤除方法,并利用在轨数 据对该方法进行了验证。结果表明,虚警滤除方法 能够有效去除虚假事件,保证探测性能。风云四号 卫星闪电成像仪和地闪探测结果的对比也表明,闪 电成像仪对雷暴发生过程具有良好的全程跟踪和定 位能力。

在风云四号卫星闪电成像仪数据中,未发现 GLM 探测到的一些虚假事件,如卫星运动引起的 抖动噪声、水体反射引起的太阳闪烁等,可能与载荷 探测区域、设计差异有关。我们将持续跟踪虚警变 化,但可以预见的是,风云四号卫星闪电成像仪将会 在中国及周边区域雷暴预报和预警、气候监测方面 发挥越来越重要的作用。

#### 参考文献

- [1] Buechler D E, Christian H J, Koshsk W J, et al. Assessing the lifetime performance of the lightning imaging sensor (LIS): implications for the geostationary lightning mapper (GLM)[C]//XIV International Conference on Atmospheric Electricity, August 8-12, 2011, Rio de Janeiro, Brazil. [S.l. : s.n.], 2011.
- [2] Goodman S. High impact weather forecasts and warnings with the GOES-R geostationary lightning mapper (GLM) [EB/OL]. [2020-10-08]. https: // www.researchgate.net/publication/267827398\_High

\_Impact\_Weather\_Forecasts\_and\_Warnings\_with\_the GOES-R Geostationary Lightning Mapper GLM.

[3] Bao S L, Tang S F, Li Y F, et al. Real-time detection technology of instantaneous point-source multi-target lightning signal on the geostationary orbit[J]. Infrared and Laser Engineering, 2012, 41(9): 2390-2395.

鲍书龙,唐绍凡,李云飞,等.静止轨道瞬态点源多 目标闪电信号实时探测技术[J].红外与激光工程, 2012,41(9):2390-2395.

- [4] Liang H, Bao S L, Chen Q, et al. Design and implementation of FY-4 geostationary lightning imager
  [J]. Aerospace Shanghai, 2017, 34(4): 43-51.
  梁华,鲍书龙,陈强,等. FY-4 卫星闪电成像仪设计 与实现[J]. 上海航天, 2017, 34(4): 43-51.
- [5] Iii S Z, Bao S L, Liang H, et al. The real-time data processing and lightning extraction technology of lightning imager on FY-4 meteorological satellite[J]. Proceedings of SPIE, 2018, 1084: 108462P.
- [6] Christian H J, Blakeslee R J, Goodman S J, et al. Algorithm theoretical basis document (ATBD) for the lightning imaging sensor(LIS)[EB/OL]. [2020-10-08]. https://www.docin.com/touch\_new/mip\_ previewHtml.do?id=1415166899.
- [7] Kirkland M W, Suszcynsky D M, Guillen J L, et al. Optical observations of terrestrial lightning by the FORTE satellite photodiode detector [J]. Journal of Geophysical Research, 2001, 106(24): 33499-33509.
- [8] Qu Y, Li H Y, Li W H, et al. The filtering of the energetic partial noise captured by the geostationary lightning image sensor[J]. Sensor Letters, 2013, 11 (5): 937-944.
- [9] Goodman S J, Blakeslee R J, Koshak W J, et al. The GOES-R Geostationary Lightning Mapper (GLM)
   [J]. Atmospheric Research, 2013, 125/126: 34-49.
- [10] Rudlosky S D, Goodman S J, Virts K S. Initial geostationary lightning mapper observations[J].
   Geophysical Research Letter, 2019, 46(2): 1097-1104.
- [11] Bürgesser R E. Assessment of the world wide lightning location network (WWLLN) detection efficiency by comparison to the lightning imaging sensor (LIS) [J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(708): 2809-2817.
- [12] Cecil D J, Buechler D E, Blakeslee R J. Gridded lightning climatology from TRMM-LIS and OTD: dataset description[J]. Atmospheric Research, 2014, 135/136: 404-414.
- [13] Chen W, Bao S L. Design of RTEP with FPGA[J].
   Spacecraft Recovery & Remote Sensing, 2005, 26 (3): 31-37.

陈伟,鲍书龙. FY-4 闪电成像仪实时事件处理器

#### 第 41 卷 第 9 期/2021 年 5 月/光学学报

#### 研究论文

(4): 648-655.

(RTEP)的 FPGA 设计研究[J]. 航天返回与遥感, 2005, 26(3): 31-37.

- [14] Cui Y, Zhou X C, Liu Y F, et al. Solar meridian extraction method based on Hough transformation
  [J]. Acta Optica Sinica, 2020, 40(17): 1701002.
  催岩,周鑫昌,刘亚飞,等.基于 Hough 变换的太阳子午线提取方法[J].光学学报, 2020, 40(17): 1701002.
- [15] Zhang Y F, Dong S Q, Bi K B. Warship formation recognition algorithm based on Hough transform and clustering [J]. Acta Armamentarii, 2016, 37(4): 648-655.
  张翼飞,董受全,毕开波.基于 Hough 变换和聚类 的舰艇编队队形识别算法[J].兵工学报, 2016, 37
- [16] Yang W S, Guo S P, Li X J, et al. Checkerboard corner detection based on Hough transform and

circular template[J]. Laser & optoelectronics progress, 2020, 57(18): 181510.

杨炜松,郭帅平,李学军,等. 基于 Hough 变换和圆 形模板的棋盘格角点检测[J].激光与光电子学进 展,2020,57(18):181510.

- [17] Xu C, Ping X L. Line detection algorithm based on improved random Hough transformation [J]. Laser & Optoelectronics Progress, 2019, 56(5): 051001.
  徐超,平雪良.基于改进随机 Hough 变换的直线检 测算法 [J].激光与光电子学进展, 2019, 56(5): 051001.
- [18] Sun J D. Contour representation and retrieval based on spatial feature and relativity of chain codes [J]. Journal of Optoelectronics Laser, 2008, 19(8): 1112-1115.
  孙君顶.基于链码分布特征及相关性的轮廓描述与

标着顶. 差于键码分布衬盖及相关性的花廓描述与 检索[J]. 光电子•激光, 2008, 19(8): 1112-1115.